Schilling, S., Melzer, R. and McCabe, P.F. (2020) Cannabis sativa. Current Biology.


Schilling, S., McCabe, P.F. and Melzer, R. (2019) Love is in the air: ethylene and sex determination in Cucurbita pepo (zucchini). Journal of Experimental Botany.

Schilling, S., Kennedy, A., Pan, S., Jermiin, L.S. and Melzer, R. (2019) Genome‐wide analysis of MIKC‐type MADS‐box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization. New Phytologist.

Li, L., Pan, S., Melzer, R. and Fricke, W. (2019) Apoplastic barriers, aquaporin gene expression and root and cell hydraulic conductivity in phosphate‐limited sheepgrass plants. Physiologia plantarum.


Käppel, S., Melzer, R., Rümpler, F., Gafert, C. and Theißen, G. (2018) The floral homeotic protein SEPALLATA 3 recognizes target DNA sequences by shape readout involving a conserved arginine residue in the MADS‐domain. The Plant Journal, 95, 2, pp.341-357.

Schilling, S., Pan, s., Kennedy, A. and Melzer, R. (2018) MADS-box genes and crop domestication: the jack of all traits. Journal of Experimental Botany, 69, 7, 1447-1469.

Rümpler, F., Theißen, G. and Melzer, R. (2018) A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors. Journal of Experimental Botany, 69, 8, pp.1943-1954.


Melzer R. (2017) Regulation of flowering time: a splicy business. Journal of experimental botany, 68, 18, 5017

Di Stilio, V.S., Melzer, R., Hall, J.C. (2017) Editorial: A broader view for plant EvoDevo: Novel approaches for diverse model systems. Frontieres in Plant Science, 8, 61


Theißen, G., Melzer, R., Rümpler, F. (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development, 143, 3259-3271

Theißen, G., Melzer, R. (2016) Robust views on plasticity and biodiversity. Annals of Botany, 117, 693-697

Melzer, R., Theißen, G. (2016) The significance of developmental robustness for species diversity. Annals of Botany, 117, 725-732


Rümpler, F., Gramzow, L., Theißen, G., Melzer, R. (2015) Did Convergent Protein Evolution Enable Phytoplasmas to Generate ‘Zombie Plants’? Trends in Plant Science, 20, 798-806

Rümpler, F., Theißen, G., Melzer, R. (2015) Character-state reconstruction to infer ancestral protein-protein interaction patterns. Bio-Protocol, 5, e1566


Melzer, R.*, Härter, A.*, Rümpler, F., Kim, S., Soltis P.S., Soltis D.E., Theißen, G. (2014) DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution. Annals of Botany, 114, 1431-1443. *equally contribution authors

Puranik, S., Acajjaoui, S., Conn, S., Costa, L., Conn, V., Vial, A., Marcellin, R., Melzer, R., Brown, E., Hart, D., Theißen, G., Silva, C.S., Parcy, F., Dumas, R., Nanao, M., Zubieta, C. (2014) Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. The Plant Cell, 26, 3603-3615

Jetha, K., Theißen, G., Melzer, R. (2014) Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes. Nucleic Acids Research, 42, 10927-10942


Theißen, G., Melzer, R. (2013) Flower development, Genetics of. In: Brenner’s Encyclopedia of Genetics, 2nd edition. Maloy, S., Hughes, K.; Ed.

Lange, M., Orashakova, S., Lange, S., Melzer, R., Theißen, G., Smyth, D.R., Becker, A. (2013) The seirena B class floral homeotic mutant of california poppy (Eschscholzia californica) reveals a function of the enigmatic PI motif in the formation of specific multimeric MADS domain protein complexes. The Plant Cell, 25, 438-453


Galimba, K.D., Tolkin, T.R., Sullivan, A.D., Melzer, R., Theißen ,G., Di Stilio, V.S. (2012) Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant. Proceedings of the National Academy of Sciences of the United States of America, 109, E2267-E2275


Wang, Y.-Q., Melzer, R., Theißen, G. (2011). A double-flowered variety of lesser periwinkle (Vinca minor fl. pl.) that has persisted in the wild for more than 160 years. Annals of Botany, 107, 1445-1452.

Melzer, R., Theißen, G. (2011). MADS and more: transcription factors that shape the plant.
Methods in Molecular Biology, 754, 3-18.


Wang, Y.-Q.*, Melzer, R.*, Theißen, G. (2010) Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of ‘floral quartets’. Plant Journal, 64, 177-190. *equally contributing authors

Erdmann, R., Gramzow, L., Melzer, R., Theißen, G., Becker, A. (2010) GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana B-sister MADS box gene ABS (TT16) that has undergone neofunctionalization. Plant Journal, 63, 914-924.

Melzer, R., Wang, Y.-Q., Theißen, G. (2010) The naked and the dead: The ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Seminars in Cell & Developmental Biology, 21, 118-128.


Melzer, R., Theißen, G. (2009) Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Research, 37, 2723-2736.

Melzer, R., Verelst, W., Theißen, G. (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Research, 37, 144-157.


Theissen, G., Melzer, R. (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Annals of Botany, 100, 603-619.


Melzer, R., Kaufmann, K., Theißen, G. (2006) Missing links: DNA-binding and target gene specificity of floral homeotic proteins. Advances in Botanical Research Incorporating Advances in Plant Pathology, 44, 209-236.

Theißen G., Melzer R. (2006) Combinatorial control of floral organ identity by MADS-domain transcription factors. In: Regulation of transcription in plants. Grasser, K.; Ed., Annual Plant Reviews, 29, 253-265.


Kaufmann, K., Melzer, R., Theißen, G. (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347, 183-198.